z-logo
Premium
Experimental study of plate‐reinforced composite deep coupling beams
Author(s) -
Su R. K. L.,
Lam W. Y.,
Pam H. J.
Publication year - 2009
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.407
Subject(s) - coupling (piping) , span (engineering) , diagonal , reinforcement , structural engineering , beam (structure) , materials science , reinforced concrete , composite number , composite material , shear (geology) , engineering , geometry , mathematics
An experimental study was conducted to investigate the behavior of deep coupling beams of span‐to‐depth ratio (1·17) fabricated according to the newly proposed plate‐reinforced composite (PRC) coupling beam design. Three PRC coupling beams of small span/depth ratio fabricated based on different approaches for load transfers between steel plates and reinforced concrete (RC) were tested under reversed cyclic loading. This paper presents the experimental results and compares the overall performance of these three specimens with two geometrically identical RC coupling beam specimens, one with diagonal reinforcement and the other with conventional reinforcement details, tested by previous researchers. It was found that the performance of PRC deep coupling beams of small span‐to‐depth ratio with properly designed plate anchorage in the wall regions can be comparable to that of diagonally reinforced coupling beams while being able to achieve a higher shear capacity without causing the problem of steel congestion. The proper design approach for the plate anchorage of PRC coupling beams was also identified. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here