z-logo
Premium
Integrated aerodynamic load determination and stiffness design optimization of tall buildings
Author(s) -
Chan C. M.,
Chui J. K. L.,
Huang M. F.
Publication year - 2009
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.397
Subject(s) - serviceability (structure) , wind engineering , structural engineering , stiffness , engineering , aerodynamics , wind tunnel , structural load , engineering design process , design process , mechanical engineering , aerospace engineering , work in process , operations management
Modern tall steel buildings are wind sensitive and are prone to dynamic serviceability problems. Although wind tunnel techniques have emerged as valuable tools in providing reliable prediction of the wind‐induced loads and effects on tall buildings, current design practice normally considers the wind tunnel‐derived loads as constant static design loads. Such practice does not take into account the change in wind‐induced structural loads while the dynamic properties of a building are modified during the design synthesis process. This paper presents a computer‐based technique that couples together an aerodynamic wind tunnel load analysis routine and an element stiffness optimization method to minimize the cost of tall steel buildings subject to the lateral drift design criteria, while allowing for instantaneous prediction and updating of wind loads during the design synthesis process. Results of a full‐scale steel building framework with the same geometric shape of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard building indicate that not only is the proposed technique able to produce the cost‐effective element stiffness distribution of the structure satisfying the serviceability wind drift design criteria, but a potential benefit of reducing the design wind loads can also be achieved by the stiffness optimization method. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here