z-logo
Premium
Seismic isolation columns for earthquake‐resistant structures
Author(s) -
Briman V.,
Ribakov Y.
Publication year - 2008
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.321
Subject(s) - base isolation , structural engineering , pendulum , engineering , structural system , constructive , earthquake engineering , seismic isolation , computer science , mechanical engineering , process (computing) , frame (networking) , operating system
Abstract Seismic isolation is a well‐known trend in earthquake design of structures. It enables a reduction in structural response to earthquakes and minimizes possible damage to buildings. This paper deals with a new constructive solution for seismic isolation, adapted to a structural scheme traditionally used in the Mediterranean region; it is usually presented as an open ground floor with a system of reinforced‐concrete columns, supported on single bases. The best‐known base isolation systems, implemented in existing structures, are elastomeric bearings and friction pendulums. The proposed solution is based on the idea of pendulum suspension brackets installed in seismic isolation columns. The main differences between existing solutions and the proposed one are that the latter requires no additional space for its installation, its lifetime corresponds to that of the structure, and no service is required during the entire period. The proposed solution provides additional damping and, like other base isolation systems, shifts the vibration period of the structure, reducing its spectral response. Since its size is compact, the ground‐floor columns of existing structures with low seismic capacity may easily be replaced by the proposed ones. It yields significant improvement in structural seismic response. Numerical simulation shows that buildings where the proposed system is installed are likely to sustain minimal damage, or none at all, whereas traditionally designed ones may suffer major damage or even collapse due to the same earthquake. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here