z-logo
Premium
An integrated approach of form finding and construction simulation for glass fiber‐reinforced polymer elastic gridshells
Author(s) -
Xiang Sheng,
Cheng Bin,
Zou Le,
Kookalani Soheila
Publication year - 2020
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1698
Subject(s) - fibre reinforced plastic , structural engineering , finite element method , process (computing) , computer science , python (programming language) , iterative and incremental development , materials science , glass fiber , composite material , engineering , software engineering , operating system
Summary Glass fiber‐reinforced polymer (GFRP) elastic gridshell is composed of long continuous GFRP tubes and achieves its shape through the elastic deformations during the lifting construction process. However, the complicated mechanical behaviors during the practical forming process are rarely examined in the previous researches. In this research, an innovative approach consolidating the form‐finding analysis and the construction simulation is proposed for the GFRP elastic gridshells. The integrated approach, which is developed with the ABAQUS and Python, is based on finite element analysis and iterative optimization; therefore, the mechanical deformations of gridshell can be accurately taken into account. The procedure of the integrated analysis is comprehensively presented by taking a typical double‐hump gridshell as an example. The form‐finding results (i.e., the flat lattices) derived from the iteration are found to be insensitive to the initial input. The structural behavior indexes (e.g., deflections, support reactions, and sectional stresses) during the lifting construction process are also available in the analysis. Based on the indexes, some general structural features of such gridshells are concluded. The achievements provide novel perspectives for the form‐finding analysis of GFRP elastic gridshells where lifting construction is involved, which is beneficial for the design and analysis of such structures.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here