z-logo
Premium
Collapse analysis of regular and irregular tall steel moment frames under fire loading
Author(s) -
Heshmati Mahdi,
Aghakouchak Ali Akbar
Publication year - 2019
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1696
Subject(s) - progressive collapse , structural engineering , geology , buckling , buckle , eurocode , moment (physics) , explosive material , bay , geotechnical engineering , engineering , reinforced concrete , physics , chemistry , oceanography , organic chemistry , classical mechanics
Summary This study is carried out to evaluate the progressive collapse of steel buildings under fire event. To this end, a 15‐story steel structure with moment‐resisting system and composite floors is considered. The effects of various parameters such as beam section size, gravity load ratio, vertical irregularity of resisting system, and location of fire compartments on collapse modes are investigated numerically. Different temperature‐time curves are defined across the composite floors according to the Eurocode 4. It is found that local collapse of the frames at the ground floor fire is triggered by the buckling of the interior heated columns at approximately 540°C. The redistributed loads by floors delay the global collapse at least 45 min. Increasing gravity loads accelerates the global collapse of the frames significantly. The heated columns of the middle floor buckle at higher temperature compared to the ground floor heated columns and no global collapse occur due to this scenario. In general, the potential of collapse of the regular and irregular frame due to fire in the edge bay is higher compared to the fire in the middle bay. It is also found that the local and global collapse of regular frames occur earlier than irregular frames.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here