Premium
Performance‐based plastic design and collapse assessment of diagrid structure fused with shear link
Author(s) -
Li Tianxiang,
Yang T.Y.,
Tong Genshu
Publication year - 2019
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1589
Subject(s) - structural engineering , structural system , downtime , shear (geology) , shear wall , engineering , grid , finite element method , geology , reliability engineering , petrology , geodesy
Summary A diagrid structure fused with shear link (DSSL) is an innovative earthquake resilient structural system. The DSSL combines the steel diagrid structural system with shear links to dissipate the earthquake energy with the goal to minimize structural repair and downtime after strong earthquake shaking. The SLs are placed between diamond‐shaped grid units and decoupled from the gravity system. To facilitate the design of the proposed DSSL system, the performance‐based plastic design (PBPD) procedure is extended to design a prototype building utilizing DSSL. Detailed finite element model is developed to simulate the non‐linear dynamic response of the structure under a range of earthquake shaking intensities. The results of non‐linear dynamic analyses show that the DSSL has excellent seismic performance and can be efficiently designed using PBPD. Lastly, detailed collapse risk assessment of the prototype building is performed using the FEMA‐P695 methodology. The result shows that the PBPD‐designed DSSL has adequate margin against collapse. Hence, it can be used as an effective seismic force resisting system.