Premium
Seismic partitioned fragility analysis for high‐rise RC chimney considering multidimensional ground motion
Author(s) -
Zhou Changdong,
Tian Miaowang,
Guo Kunpeng
Publication year - 2019
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1568
Subject(s) - chimney (locomotive) , fragility , structural engineering , ground motion , incremental dynamic analysis , seismic analysis , peak ground acceleration , spectral acceleration , geology , engineering , physics , mechanical engineering , inlet , thermodynamics
Summary In order to identify the vulnerable parts and areas of the high‐rise reinforced concrete chimney, this paper presents an effective method, which called partitioned fragility analysis. One 240‐m‐high reinforced concrete chimney was selected as the practical project, and its analytical model was created with ABAQUS software. The selected high‐rise chimney structure was divided into 17 parts, and then the damage probability of each part in different damage states was obtained with the fragility analysis considering multidimensional ground motions. Twenty ground motion records were taken from the Next Generation Attenuation database as the input motions, and the peak ground acceleration was selected as the intensity measure. The response of the chimney structure under multidimensional ground motions was obtained based on incremental dynamic analysis. The maximum strains of concrete and steel bars were defined as the damage limit states of the chimney structure. The fragility curves and surfaces obtained from this analysis showed that the vulnerable areas of the chimney structure appear at 0–20 m, 90–130 m, and 150–200 m along the height of the chimney respectively. Based analytical results, these vulnerable parts can be retrofitted to enhance the seismic resistance of existing chimney structures. And the partitioned fragility analysis method can also be used to improve the design of new chimney structures.