Premium
The wall–frame and the steel–concrete interactions in composite shear walls
Author(s) -
Shafaei Soheil,
Farahbod Farhang,
Ayazi Amir
Publication year - 2018
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1476
Subject(s) - steel plate shear wall , shear wall , infill , materials science , shear (geology) , structural engineering , stiffness , composite number , composite material , geotechnical engineering , geology , engineering
Summary The nonlinear pushover analyses of 24 composite steel plate shear walls (CSPSWs), 24 corresponding steel plate shear walls (SPSWs), and 24 corresponding frames are conducted. CSPSWs have different aspect ratios and infill steel plate thicknesses. The study aims to understand the wall–frame and steel–concrete interactions. The infill steel plate thickness and aspect ratio of CSPSW are the main parameters of the study. In CSPSWs, the percentage of absorbed shear forces by the infill composite wall is always greater than the infill plate of its corresponding SPSW. The percentage of shear in the composite wall is constant at the initial stage of loading up to a drift of 0.15–0.2%. By increasing the drift, the shear yielding of steel plate leads to a reduction of the shear force absorption. The reduction continues until the bulk of shear stiffness of CSPSW is provided by the frame. At the beginning of lateral loading, steel–concrete interactions increase until shear yield of steel plate. Following this stage, a sudden decrease takes place in shear force absorption of reinforced concrete (RC) panel. The reason is that, at the lower drifts, the steel plate has a tendency for elastic buckling, which is prevented by the RC panel. Finally, the shear force absorption remains approximately constant in the RC panel.