Premium
Strength and post‐yield behavior of T‐section steel encased by structural concrete
Author(s) -
Nzabonimpa J.D.,
Hong WonKee,
Kim Jisoon
Publication year - 2017
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1447
Subject(s) - precast concrete , structural engineering , finite element method , ductility (earth science) , yield (engineering) , nonlinear system , materials science , composite number , plasticity , section (typography) , composite material , engineering , computer science , creep , physics , quantum mechanics , operating system
Summary In this study, the seismic performance of unsymmetrical steel–concrete composite precast beams with T‐shaped steel section were numerically explored and validated by their earlier experimental investigation. This design is based on the proposed calibrated finite element model in which key damage parameters for the evaluation of the nonlinear, post‐yield behavior of the precast composite steel beams were identified. The proposed nonlinear finite‐element‐based numerical model uses various parameters, including the dilatation angle and concrete‐damaged plasticity, to simulate the nonlinear behavior of unsymmetrical composite precast beams with T‐section steel. Greater seismic capacity with greater ductility, contributing to a maximized structural capacity within the composite precast beams was introduced by the effective use of the 2 materials, steel and concrete, and shown by the nonlinear hysteretic investigation of unsymmetrical steel–concrete composite precast beams that was validated experimentally. The post‐yield structural capacity found via the numerical analysis agrees with experimental results when the concrete‐damaged plasticity of the plastic‐damaged seismic model for concrete and the von Mises criteria of the steel section were introduced into the finite element model. Practical design parameters and recommendations were eventually suggested by examining the influence of precast composite beams with unsymmetrical steel sections on the concrete degradations and damage evolution.