z-logo
Premium
Cyclic analyses of corrugated steel plate shear walls
Author(s) -
Zhao Qiuhong,
Sun Junhao,
Li Yanan,
Li Zhongxian
Publication year - 2017
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1351
Subject(s) - steel plate shear wall , shear wall , structural engineering , materials science , stiffness , ductility (earth science) , dissipation , shear (geology) , structural load , composite material , geology , engineering , physics , creep , thermodynamics
Summary Corrugated steel plate shear wall (CoSPSW), which consists of a steel boundary frame and a corrugated steel wall panel with the corrugation in the horizontal or vertical direction, is a new type of lateral load‐resisting system in the family of steel plate shear walls. Compared with the unstiffened special plate shear walls (SPSW), CoSPSW would have greater elastic buckling capacity and more resistance to the gravity loads transferred to the wall panel or neatly avoid them, depending on the corrugation direction. The main research contents of this paper is on the cyclic behavior of CoSPSWs and comparison with SPSWs. Nonlinear push‐over and cyclic analyses were conducted on a group of CoSPSW and SPSW models, and parametric studies were performed with different panel and frame configuration, as well as gravity load effects. It turns out that CoSPSWs with deep corrugation have higher lateral stiffness, lateral strength, and energy dissipation than SPSWs, whereas CoSPSWs with shallow corrugation have higher lateral stiffness and ductility, but lower lateral strength than SPSWs. For all cases investigated, CoSPSWs have stable hysteric curves with no almost pinching, and they are much less sensitive to the influence of gravity loads or weaker boundary frames, compared to SPSWs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here