z-logo
Premium
Experimental investigation of the influence of steel joints upon the flexural capacity of precast concrete columns
Author(s) -
Kim Jisoon,
Hong WonKee,
Kim JiHun
Publication year - 2016
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1340
Subject(s) - precast concrete , flexural strength , structural engineering , materials science , engineering
Summary In previous studies, the authors have shown that successful modular construction depends on using the correct types of joint connections. In this experimental study, steel beam–column joint connections were shown to be very efficient in facilitating the construction of modular frames while ensuring sufficient flexural moment capacity at the joints to resist lateral loads. This research also included an investigation of the behavior, the crack pattern, and the flexural moment capacity of concrete columns with hybrid composite joints by means of structural experiments on three specimens. Three column specimens were subjected to cyclic loading under displacement control using an oil jack. The influence of including steel sections at the beam–column joint upon the flexural moment capacity of the column was studied, and the use of concrete–steel hybrid composite joints was found to increase the flexural structural performance of the concrete columns. The flexural moment capacity in the maximum load limit state of a concrete column with steel joints was 43.2% greater than that of a conventional reinforced concrete column without steel joints. The steel section in the joint was found to greatly contribute to the flexural moment capacity and to the modular construction technologies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here