Premium
Structural response of vertically irregular tall moment‐resisting steel frames under pre‐ and post‐earthquake fire
Author(s) -
Behnam Behrouz
Publication year - 2015
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1271
Subject(s) - moment (physics) , geology , structural engineering , forensic engineering , seismology , engineering , physics , classical mechanics
Summary Post‐earthquake fires (PEF) may result in a catastrophe in urban regions even worse than the earthquake itself. Most urban structures are not designed to resist two subsequent extreme loads such as earthquake and fire. Thus, these types of structures are too weak when subjected to the PEF loads. On the other hand, it is well understood that irregular building structures are more susceptible to sustain earthquake damage than regular buildings. Investigating irregular buildings can therefore be more important when there is a high possibility of PEF. While there are various irregularities, here, vertical irregularity is considered. The study is performed on one irregular seven‐story tall moment‐resisting steel frame designed based on the American Society of Civil Engineers code. The frame is firstly subjected to an earthquake load with the peak ground acceleration of 0.35 g and then is exposed to a generalized exponential fire curve. To make a comparison between the results, the PEF analysis is also performed for the regular frame. The results show that there is a marked difference between the PEF of the regular frame with that of the irregular frame. In addition, two types of failure—local and global—were observed during the analysis, where the local collapse is related to the deflection of beams, and the global collapse is pertained to the considerable movement of the columns. It is observed during the analysis that the irregular frames are more susceptible to collapse globally. Copyright © 2015 John Wiley & Sons, Ltd.