Premium
An introduction to the structural design of rocking wall‐frames with a view to collapse prevention, self‐alignment and repairability
Author(s) -
Grigorian Mark,
Grigorian Carl
Publication year - 2015
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1230
Subject(s) - rigidity (electromagnetism) , structural engineering , stiffness , moment (physics) , shear wall , engineering , progressive collapse , computation , sensitivity (control systems) , computer science , algorithm , reinforced concrete , physics , classical mechanics , electronic engineering
Summary The purpose of this article is to present a new method of analysis for the structural design of pin‐supported rocking wall‐moment frames with supplementary devices and post‐tensioned stabilizers. The function of the wall is to prevent soft story failure, impose uniform drift and provide support for the supplementary equipment. The proposed methodology lends itself well to several seismic design strategies, ranging from severe damage avoidance, to collapse prevention, to structural self‐alignment and repairability. Repairability means avoiding major damage to columns and foundations. The success of the resulting solutions is due to the single degree of freedom behavior of the combined system and the fact that its overall performance is not significantly affected by minor changes in the stiffness of the wall. The sensitivity of the response to wall rigidity is addressed by comparing the maximum elastic slope of the wall with a fraction of the specified uniform drift. The limitations of rocking wall‐moment frames, as viable lateral resisting systems, have been addressed. Several worked examples have been presented to provide insight and technical information that may not be readily available from electronic output. The proposed solutions are exact within the bounds of the theoretical assumptions and are ideally suited for manual as well as spreadsheet computations. Copyright © 2015 John Wiley & Sons, Ltd.