Premium
Nonlinear hysteretic behavior simulation of reinforced concrete shear walls using the force analogy method
Author(s) -
Li Gang,
Zhang Feng,
Zhang Yu,
Li HongNan
Publication year - 2015
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1177
Subject(s) - structural engineering , hinge , shear wall , softening , nonlinear system , stiffness , reinforced concrete , shear (geology) , deflection (physics) , flexural strength , shear force , materials science , computer science , engineering , physics , classical mechanics , composite material , quantum mechanics
Summary Reinforced concrete (RC) shear walls that provide high strength and stiffness are widely used in buildings to resist lateral loads. It often exhibits complex and multiple hysteretic behaviors, including shear behavior, flexural behavior, strength softening, and deterioration, which are often influenced by the reinforcement and concrete material characteristics, vertical loads, and so on. Significant effort has gone toward developing accurate and efficient models, and these models fall into two categories: macroscopic and microscopic models. The microscopic models are accurate but computationally expensive and need more material information and experimental results for calibration. The present research is to implement an existing macroscopic model for use in the force analogy method, which is an accurate, efficient, and stable algorithm for conducting dynamic analysis when coupled with the state space formulation. The RC shear wall model with two vertical sliding hinges and one horizontal sliding hinge assigned to capture the relationship of the lateral deflection or rotation versus the RC shear wall force is validated against prior experimental results. The proposed model is also implemented in a frame, in which inelastic response occurs in both the frame and the RC shear wall members, to demonstrate the application of the model and the potential for simulating complex inelastic dynamic RC frame‐wall structural behavior with the force analogy method. Copyright © 2014 John Wiley & Sons, Ltd.