z-logo
Premium
Behaviour of uni‐axially loaded concrete‐filled‐steel‐tube columns confined by external rings
Author(s) -
Lai M. H.,
Ho J. C. M.
Publication year - 2012
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1046
Subject(s) - materials science , structural engineering , stiffness , composite number , composite material , ductility (earth science) , axial symmetry , dilation (metric space) , engineering , geometry , creep , mathematics
SUMMARY Concrete‐filled‐steel‐tube (CFST) columns have been widely adopted for column construction of tall buildings due to its superior strength and ductility performance contributed by the composite action. However, this beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby causing imperfect interface bonding. Hence, it reduces the elastic strength and stiffness of the CFST columns. To resolve the problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel at initial elastic stage. In this paper, CFST columns of various dimensions cast with normal‐strength or high‐strength concrete and installed with external steel rings were tested under uni‐axial compression. From the results, it was evident that (a) the external steel rings could restrict the lateral dilation of CFST columns and improve the interface bonding condition and (b) externally confined CFST columns had uni‐axial strength and stiffness larger than those of unconfined CFST columns. With the experimental results, an analytical model taking into account the confining effects of steel tube and rings has been developed to predict the uni‐axial strength of ring‐confined CFST columns. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here