Premium
Progressive collapse resisting capacity of tilted building structures
Author(s) -
Kim Jinkoo,
Jung MinKang
Publication year - 2012
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.1010
Subject(s) - progressive collapse , geology , forensic engineering , materials science , geotechnical engineering , structural engineering , engineering , reinforced concrete
SUMMARY In this study, the progressive collapse resisting capacities of tilted buildings are evaluated on the basis of arbitrary column removal scenario. As analysis model structures both regular and tilted moment‐resisting frames, structures with outrigger trusses, and tubular/diagrid structures are designed, their progressive collapse resisting capacities are evaluated by nonlinear static and dynamic analyses. It turns out that the tilting of the structures requires increased steel tonnage due to the increased p ‐delta effect. In addition in the tilted structures the plastic hinges are more widely distributed throughout the bays and stories when a column is removed from a side or a corner of the structures. With the analysis results, it is concluded that the tilted building structures, once they are properly designed to satisfy a given design code, may have at least an equivalent resisting capacity for progressive collapse caused by sudden loss of a column. Copyright © 2012 John Wiley & Sons, Ltd.