Premium
RAD ‐Seq Refines Previous Estimates of Genetic Structure in Lake Erie Walleye
Author(s) -
Chen KuanYu,
Euclide Peter T.,
Ludsin Stuart A.,
Larson Wesley A.,
Sovic Michael G.,
Gibbs H. Lisle,
Marschall Elizabeth A.
Publication year - 2020
Publication title -
transactions of the american fisheries society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 86
eISSN - 1548-8659
pISSN - 0002-8487
DOI - 10.1002/tafs.10215
Subject(s) - genetic structure , stock (firearms) , fishery , structural basin , biology , geography , ecology , genetic variation , gene , archaeology , genetics , paleontology
Delineating population structure helps fishery managers to maintain a diverse “portfolio” of local spawning populations (stocks), as well as facilitate stock‐specific management. In Lake Erie, commercial and recreational fisheries for Walleye Sander vitreus exploit numerous local spawning populations, which cannot be easily differentiated using traditional genetic data (e.g., microsatellites). Here, we used genomic information (12,264 polymorphic loci) generated using restriction site‐associated DNA sequencing to investigate stock structure in Lake Erie Walleye. We found low genetic divergence (genetic differentiation index F ST = 0.0006–0.0019) among the four Lake Erie western basin stocks examined, which resulted in low classification accuracies for individual samples (40–60%). However, more structure existed between western and eastern Lake Erie basin stocks ( F ST = 0.0042–0.0064), resulting in greater than 95% classification accuracy of samples to a lake basin. Thus, our success in using genomics to identify stock structure varied with spatial scale. Based on our results, we offer suggestions to improve the efficacy of this new genetic tool for refining stock structure and eventually determining relative stock contributions in Lake Erie Walleye and other Great Lakes populations.