z-logo
Premium
Impacts and Implications of Temperature Variability on Chinook Salmon Egg Development and Emergence Phenology
Author(s) -
Beer W. Nicholas,
Steel E. Ashley
Publication year - 2018
Publication title -
transactions of the american fisheries society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 86
eISSN - 1548-8659
pISSN - 0002-8487
DOI - 10.1002/tafs.10025
Subject(s) - oncorhynchus , chinook wind , phenology , biology , ecology , environmental science , fishery , fish <actinopterygii>
The nonlinear relationship of egg development rates to temperature due to compensatory mechanisms in Chinook Salmon Oncorhynchus tshawytscha has consequences for emergence timing in nonoptimal and/or highly variable temperature regimes. A mechanistic model of the relationship between temperature and development was used to better understand laboratory results on the primary effects of temperature variability leading to emergence. The model was then applied to a natural river system and used to predict emergence timing while considering additional factors associated with natural spawning such as an individual spawner's timing, the stock's spawning season, and spawning cue. In the natural system simulations, the largest source of emergence timing variability was due to interannual water temperature regimes and spawning date variation. Lesser emergence variability resulted from temperature variability, family lineage, egg size, individual spawner's timing, and spawning cue. An improved understanding of the role of riverine thermal regimes in inducing developmental variability can contribute to conservation planning and predictions of phenology under future climates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here