Premium
Managing system obsolescence via multicriteria decision making
Author(s) -
Adetunji Oluwatomi,
Bischoff John,
Willy Christopher J.
Publication year - 2018
Publication title -
systems engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.474
H-Index - 50
eISSN - 1520-6858
pISSN - 1098-1241
DOI - 10.1002/sys.21436
Subject(s) - obsolescence , topsis , multiple criteria decision analysis , risk analysis (engineering) , operations research , computer science , engineering , reliability engineering , management science , business , marketing
Obsolescence occurs when system elements become outdated, and it leads to operational, logistical, reliability, and cost implications. In the U.S. military, this problem is a result of the U.S. Department of Defense's (DoD) departure from Military Specification (MILSPEC) standards in 1994 and transition to the use of Commercial Off the Shelf products. Obsolescence costs the DoD more than $750 million annually. The current risk management tools for obsolescence are based on a quantitative approach that uses cost optimization, and expert judgment is not used as a critical criterion. A review of the literature has revealed that during the design phase of technological systems, there is limited knowledge and a lack of training associated with mitigating obsolescence, and multicriteria decision‐making (MCDM) methods are not currently used to mitigate the risk of obsolescence. Thus, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS, which is a MCDM method) and Monte Carlo simulations are proposed as the foundation for this work. This paper adds to the methodology by introducing an expert judgment criterion. A case study was conducted using military and civilian experts. Expert validation showed that the TOPSIS model successfully identified the best system for mitigating obsolescence. This model can be used by system designers and other decision makers to conduct trade studies in obsolescence management.