z-logo
Premium
Response to novelty predicts the locomotor and nucleus accumbens dopamine response to cocaine
Author(s) -
Hooks M. Stacy,
Jones Graham H.,
Smith Amanda D.,
Neill Darryl B.,
Justice Joseph B.
Publication year - 1991
Publication title -
synapse
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.809
H-Index - 106
eISSN - 1098-2396
pISSN - 0887-4476
DOI - 10.1002/syn.890090206
Subject(s) - nucleus accumbens , dopamine , dopaminergic , locomotor activity , microdialysis , novelty , striatum , neuroscience , medicine , psychology , endocrinology , pharmacology , chemistry , social psychology
The relationship between a rat's locomotor response to a novel environment and its behavioral and dopaminergic responses to cocaine was examined. Subjects were divided into two groups based on their locomotor response to a novel environment. Subjects who had a novelty response above the median were classified as high responders (HR), while those with a novelty response below the median were classified as low responders (LR). Following administration of cocaine‐HC1 (0, 2.5, 5.0, 10.0, or 15.0 mg/kg), HR rats showed a greater locomotor response than LR rats. Moreover, there was a significant correlation between a subject's locomotor response to the novel environment and the locomotor response to either 10.0 (r = 0.65) or 15.0 (r = 0.92) mg/kg cocaine. In a separate experiment, the extracellular concentration of dopamine in the nucleus accumbens (NACC) was monitored using microdialysis procedures. Following cocaine administration (15.0 mg/kg) HR rats showed a larger NACC dopamine response and greater locomotor activity than LR rats. In addition, there was a threefold greater locomotor activity to dopamine ratio in HR rats than in LR rats. A correlation between a subject's locomotor response to a novel environment and the dopaminergic response to cocaine was also evident. These results suggest that differences in the locomotor response to cocaine can, to some degree, be predicted by a rat's locomotor response to a novel environment, and that variations in dopamine‐dependent mechanisms of the NACC may underlie these individual differences.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here