z-logo
Premium
Electrophysiological characterization of dopamine neuronal activity in the ventral tegmental area across the light–dark cycle
Author(s) -
DomínguezLópez Sergio,
Howell Rebecca Dean,
LópezCanúl Martha Graciela,
Leyton Marco,
Gobbi Gabriella
Publication year - 2014
Publication title -
synapse
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.809
H-Index - 106
eISSN - 1098-2396
pISSN - 0887-4476
DOI - 10.1002/syn.21757
Subject(s) - ventral tegmental area , dopamine , autoreceptor , chemistry , amphetamine , inhibitory postsynaptic potential , electrophysiology , dopaminergic , apomorphine , medicine , endocrinology , biology , serotonin , biochemistry , receptor
Direct evidence that dopamine (DA) neurotransmission varies during the 24 h of the day is lacking. Here, we have characterized the firing activity of DA neurons located in the ventral tegmental area (VTA) using single‐unit extracellular recordings in anesthetized rats kept on a standard light–dark cycle. DA neuronal firing activity was measured under basal conditions and in response to intravenous administration of increasing doses of amphetamine (AMPH: 0.5, 1, 2, 5 mg/kg), apomorphine (APO: 25, 50, 100, 200 µg/kg) and melatonin (MLT: 0.1, 1, 10 mg/kg) at different time intervals of the light–dark cycle. DA firing activity peaked between 07:00 and 11:00 h (3.5 ± 0.3 Hz) and between 19:00 and 23:00 h (4.1 ± 0.7 Hz), with lowest activity occurring between 11:00 and 15:00 h (2.4 ± 0.2 Hz) and between 23:00 and 03:00 h (2.6 ± 0.2 Hz). The highest number of spontaneously active neurons was observed between 03:00 and 06:00 h (2.5 ± 0.3 neurons/track), whereas the lowest was between 19:00 and 23:00 h (1.5 ± 0.2 neurons/track). The inhibitory effect of AMPH on DA firing rate was similar in both phases. The inhibitory effect of low dose of APO (25 μg/kg, dose selective for D 2 autoreceptor) was more potent in the dark phase, whereas APO effects at higher doses were similar in both phases. Finally, MLT administration (1 mg/kg) produced a moderate inhibition of DA cell firing in both phases. These experiments demonstrate the existence of an intradiurnal rhythmic pattern of VTA DA neuronal firing activity and a higher pharmacological response of D 2 autoreceptors in the dark phase. Synapse 68:454–467, 2014 . © 2014 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom