Open Access
Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications
Author(s) -
Ngwira Chigomezyo M.,
Pulkkinen Antti,
Wilder Frederick D.,
Crowley Geoffrey
Publication year - 2013
Publication title -
space weather
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.254
H-Index - 56
ISSN - 1542-7390
DOI - 10.1002/swe.20021
Subject(s) - geomagnetically induced current , earth's magnetic field , space weather , electrojet , geomagnetic storm , geophysics , latitude , geology , magnetic field , geodesy , physics , quantum mechanics
Geomagnetically induced currents (GIC) flowing in man‐made ground technological systems are a direct manifestation of adverse space weather. Today, there is great concern over possible geomagnetically induced current effects on power transmission networks that can result from extreme space weather events. The threat of severe societal consequences has accelerated recent interest in extreme geomagnetic storm impacts on high‐voltage power transmission systems. As a result, extreme geomagnetic event characterization is of fundamental importance for quantifying the technological impacts and societal consequences of extreme space weather. This article reports on the global behavior of the horizontal geomagnetic field and the induced geoelectric field fluctuations during severe/extreme geomagnetic events. This includes (1) an investigation of the latitude threshold boundary, (2) the local time dependency of the maximum induced geoelectric field, and (3) the influence of the equatorial electrojet (EEJ) current on the occurrence of enhanced induced geoelectric fields over ground stations located near the dip equator. Using ground‐based and satellite‐borne Defense Meteorological Satellite Program measurements, this article confirms that the latitude threshold boundary is associated with the movements of the auroral oval and the corresponding auroral electrojet current system, which is the main driver of the largest perturbations of the ground geomagnetic field at high latitudes. In addition, we show that the enhancement of the EEJ is driven by the penetration of high‐latitude electric fields and that the induced geoelectric fields at stations within the EEJ belt can be an order of magnitude larger than that at stations outside the belt. This has important implications for power networks located around the electrojet belt and confirms that earlier observations by Pulkkinen et al. (2012) were not isolated incidences but rather cases that can occur during certain severe geomagnetic storm events.