Premium
Punching shear tests on compact footings with uniform soil pressure
Author(s) -
Simões João T.,
Bujnak Jan,
Ruiz Miguel Fernández,
Muttoni Aurelio
Publication year - 2016
Publication title -
structural concrete
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.912
H-Index - 34
eISSN - 1751-7648
pISSN - 1464-4177
DOI - 10.1002/suco.201500175
Subject(s) - punching , structural engineering , reinforcement , geotechnical engineering , shear (geology) , shear strength (soil) , reinforced concrete , materials science , engineering , geology , composite material , soil water , soil science
Abstract Punching shear is usually the governing failure criterion when selecting the depth of reinforced concrete footings. Despite the fact that large experimental programmes aimed at the punching strength of slender flat slabs have been performed in the past, only a few experimental campaigns on full‐scale compact reinforced concrete footings can be found in the literature. This paper presents the results of an experimental programme including eight reinforced concrete footings with a nominal thickness of 550 mm. These experiments investigated the influence of column size, member slenderness and the presence of compression and shear reinforcement. The tests were performed using an innovative test setup to ensure a uniform soil pressure. The experimental results show that slenderness influences the punching shear strength as well as the effectiveness of the shear reinforcement. The experiments also show that an important interaction occurs between bending and shear for high levels of shear force near the column (the typical case of compact footings or members with large amounts of shear reinforcement). Different continuous measurements recorded during the experimental tests allow a complete description of the kinematics and strains at failure. On that basis, experimental evidence is obtained showing that crushing of the concrete struts near the column is the phenomenon that triggers the punching failure of compact footings.