z-logo
Premium
Syntactic reductions for efficient deadlock analysis
Author(s) -
De Francesco Nicoletta,
Santone Antonella
Publication year - 2002
Publication title -
software testing, verification and reliability
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 49
eISSN - 1099-1689
pISSN - 0960-0833
DOI - 10.1002/stvr.252
Subject(s) - deadlock , computer science , automaton , model checking , programming language , state (computer science) , reduction (mathematics) , deadlock prevention algorithms , finite state machine , theoretical computer science , algorithm , mathematics , geometry
A well‐known problem in the verification of concurrent systems based on model checking is state explosion: concurrent systems are often represented by automata with a prohibitive number of states. A reduction technique to reduce state explosion in deadlock checking is presented. The method is based on an automatic syntactic simplification of a calculus of communicating systems (CCS) specification, which keeps the parts of the program structure that may lead to a deadlock and deletes the other parts. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom