z-logo
open-access-imgOpen Access
Tumor Necrosis Factor Receptors Support Murine Hematopoietic Progenitor Function in the Early Stages of Engraftment
Author(s) -
PearlYafe Michal,
Mizrahi Keren,
Stein Jerry,
Yolcu Esma S.,
Kaplan Ofer,
Shirwan Haval,
Yaniv Isaac,
Askenasy Nadir
Publication year - 2010
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.448
Subject(s) - biology , tumor necrosis factor alpha , progenitor cell , haematopoiesis , receptor , stem cell factor , stem cell , immunology , bone marrow , microbiology and biotechnology , cytokine , cancer research , genetics
Tumor necrosis factor (TNF) family receptors/ligands are important participants in hematopoietic homeostasis, in particular as essential negative expansion regulators of differentiated clones. As a prominent injury cytokine, TNF‐α has been traditionally considered to suppress donor hematopoietic stem and progenitor cell function after transplantation. We monitored the involvement of TNF receptors (TNF‐R) 1 and 2 in murine hematopoietic cell engraftment and their inter‐relationship with Fas. Transplantation of lineage‐negative (lin − ) bone marrow cells (BMC) from TNF receptor‐deficient mice into wild‐type recipients showed defective early engraftment and loss of durable hematopoietic contribution upon recovery of host hematopoiesis. Consistently, cells deficient in TNF receptors had reduced competitive capacity as compared to wild‐type progenitors. The TNF receptors were acutely upregulated in bone marrow (BM)‐homed donor cells (wild‐type) early after transplantation, being expressed in 60%–75% of the donor cells after 6 days. Both TNF receptors were detected in fast cycling, early differentiating progenitors, and were ubiquitously expressed in the most primitive progenitors with long‐term reconstituting potential (lin − c‐kit + stem cell antigen (SCA)‐1 + ). BM‐homed donor cells were insensitive to apoptosis induced by TNF‐α and Fas‐ligand and their combination, despite reciprocal inductive cross talk between the TNF and Fas receptors. The engraftment supporting effect of TNF‐α is attributed to stimulation of progenitors through TNF‐R1, which involves activation of the caspase cascade. This stimulatory effect was not observed for TNF‐R2, and this receptor did not assume redundant stimulatory function in TNFR1‐deficient cells. It is concluded that TNF‐α plays a tropic role early after transplantation, which is essential to successful progenitor engraftment. S TEM C ELLS 2010;28:1270–1280

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here