
Intratumoral Hypoxic Gradient Drives Stem Cells Distribution and MGMT Expression in Glioblastoma
Author(s) -
Pistollato Francesca,
Abbadi Sara,
Rampazzo Elena,
Persano Luca,
Della Puppa Alessandro,
Frasson Chiara,
Sarto Eva,
Scienza Renato,
D'avella Domenico,
Basso Giuseppe
Publication year - 2010
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.415
Subject(s) - biology , temozolomide , stem cell , cancer research , stem cell marker , glial fibrillary acidic protein , cancer stem cell , pathology , glioma , immunology , microbiology and biotechnology , immunohistochemistry , medicine
Glioblastoma multiforme (GBM) are highly proliferative tumors currently treated by surgical removal, followed by radiotherapy and chemotherapy, which are counteracted by intratumoral hypoxia. Here we exploited image guided surgery to sample multiple intratumoral areas to define potential cellular heterogeneity in correlation to the oxygen tension gradient within the GBM mass. Our results indicate that more immature cells are localized in the inner core and in the intermediate layer of the tumor mass, whereas more committed cells, expressing glial fibrillary acidic protein and β‐III‐tubulin, are distributed along the peripheral and neo‐vascularized area, where Smad1/5/8 and Stat3 result to be activated. Moreover, GBM stem cells, identified with the stem cell marker CD133, express high level of DNA repair protein O6‐methylguanine‐DNA‐methyltransferase (MGMT) known to be involved in chemotherapy resistance and highly expressed in the inner core of the tumor mass. Importantly, these cells and, particularly, CD133 + cells result to be resistant to temozolomide (TMZ), the most used oral alkylating agent for the treatment of GBM, which specifically causes apoptosis only in GBM cells derived from the peripheral layer of the tumor mass. These results indicate a correlation between the intratumoral hypoxic gradient, the tumor cell phenotype, and the tumor resistance to chemotherapy leading to a novel concentric model of tumor stem cell niche, which may be useful to define the real localization of the chemoresistant GBM tumor cells in order to design more effective treatment strategies. S TEM C ELLS 2010;28:851–862