Premium
Curved surface sliders with friction damping, linear viscous damping, bow tie friction damping, and semiactively controlled properties
Author(s) -
Weber Felix,
Distl Johann,
Meier Leopold,
Braun Christian
Publication year - 2018
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.2257
Subject(s) - magnetic damping , viscous damping , damper , damping torque , damping matrix , stiffness , damping ratio , acceleration , damping factor , amplitude , control theory (sociology) , nonlinear system , magnetorheological fluid , mechanics , structural engineering , engineering , physics , acoustics , classical mechanics , vibration , stiffness matrix , computer science , voltage , direct torque control , quantum mechanics , induction motor , artificial intelligence , electrical impedance , control (management) , impedance matching , electrical engineering
Summary This paper investigates the isolation performance of curved surface sliders (CSSs) with different damping mechanisms. The following passive damping mechanisms are considered: passive friction damping as commonly present in CSSs, linear viscous damping as linear damping mechanism, and bow tie friction as adaptive, that is, position‐dependent, but passive approach; CSSs with adaptive behaviour based on different sliding regimes are not considered. From the field of CSSs with semiactive dampers, two control strategies are considered: amplitude proportional friction damping aiming at linearizing the friction damping over one cycle and semiactively controlled damping and stiffness properties to enhance the decoupling between ground and structure by the emulation of zero dynamic stiffness. The CSSs under consideration are assessed in terms of peak structural acceleration, peak CSS horizontal force and displacement, and recentring error as function of peak ground acceleration (PGA) of the accelerograms. The results demonstrate that (a) friction damping can be optimized at one PGA only due to its nonlinearity, (b) the optimization of linear viscous damping does not depend on PGA, (c) optimized bow tie friction improves the isolation at low PGA while the isolation at medium to high PGAs worsens, (d) optimized amplitude proportional friction damping does not improve the isolation compared with optimized linear viscous damping, and (e) zero dynamic stiffness is preferably emulated only for a certain range of CSS relative motion amplitude to keep the recentring error within acceptable limits.