z-logo
Premium
Statistical model optimized random forest regression model for concrete dam deformation monitoring
Author(s) -
Dai Bo,
Gu Chongshi,
Zhao Erfeng,
Qin Xiangnan
Publication year - 2018
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.2170
Subject(s) - random forest , generalization , statistical model , regression analysis , deformation monitoring , engineering , deformation (meteorology) , predictive modelling , computer science , geotechnical engineering , data mining , machine learning , mathematics , geography , meteorology , mathematical analysis
Summary The unique structures and foundations of a dam make its safety monitoring a complex task. As the most intuitive effect of dams, deformation contains important information on dam evolution. Actual response has the purpose of diagnosis and early warning compared with model prediction. Given the poor generalization ability of the conventional statistical model, establishing a dam deformation monitoring model is thus essential. The prediction of concrete dam deformation using statistical model and random forest regression (RFR) model is studied. To build an optimized RFR model, the statistical model is used to establish input variables, select the appropriate parameters M try and N tree according to out‐of‐bag error, and extract strong explanatory variables. The model's advantage is that the influence factors can describe concrete dam deformation, and RF can serve as a sensible new data mining tool. The importance of variables for deformation prediction is measured by RF. The RFR method can extract representative influencing factors based on variable importance. The methods are applied to an actual concrete dam. Results indicate that the RFR model can be applied for analysis and prediction of other structural behavior.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here