Premium
Theoretical study and experimental validation on the energy dissipation mechanism of particle dampers
Author(s) -
Lu Zheng,
Huang Biao,
Zhou Ying
Publication year - 2018
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.2125
Subject(s) - dissipation , vibration , damper , structural engineering , kinetic energy , mechanics , materials science , engineering , classical mechanics , physics , acoustics , thermodynamics
Summary An energy dissipation factor was proposed to quantify the energy dissipation mechanism of particle dampers based on theoretical analysis and was further validated by free vibration tests and wind tunnel tests. The vibration energy of the main structure was consumed by impact and friction between particles and between particles and the container. An elastoplastic collision model and a simplified frictional‐elastic collision model were used to analyze the energy dissipation due to impact and friction, respectively. Then, an energy dissipation factor, reflecting the vibration energy consumption of a particle damper, was defined. Finally, free vibration tests and aero‐elastic wind tunnel tests of a benchmark model unattached or attached with particle dampers were conducted to validate the relationship between the vibration reduction performances and the energy dissipation factors, and the experimental results were in qualitative agreement with the theoretical results. Consequently, the energy dissipation factor indicated the energy dissipation mechanism of particle dampers and can be used to select the proper material of the particles, helping to maximize the vibration control effects from the material's perspective. It was shown that the material of higher kinetic friction coefficient, higher modulus of elasticity, and lower yield strength usually leads to better energy dissipation effects.