Premium
Development and implementation of horizontal‐plane settlement indication system for freeway health monitoring during underpass construction
Author(s) -
Chung ChihChung,
Lin ChihPing,
Chin ChiHsien,
Chou KunHsien
Publication year - 2017
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.1995
Subject(s) - settlement (finance) , roof , engineering , structural health monitoring , overburden , structural engineering , geotechnical engineering , computer science , world wide web , payment
Summary This study introduced two major contributions for freeway health monitoring during the pipe roof construction and subsequent excavation to enlarge an existing underpass. First, a horizontal‐plane settlement indication system (HSIS) was developed to monitor inevitable settlement due to shallow overburden above the steel pipes. Second, the experience gained from the field monitoring program was detailed with emphasis on encountered problems and countermeasures for freeway safety decision‐making. On the basis of two microelectromechanical systems tilt sensors embedded as a differential pair, HSIS effectively minimizes the effect of ambient temperature whose fluctuation was expected at shallow depth. The measurement accuracy (≤4 mm) and repeatability (≤0.05 mm) were verified experimentally. Thereby, three HSIS arrays were positioned in the freeway pavement to continuously detect local settlement and based on which to issue possible alarm. The RS485 data acquisition protocol, which is characterized by fast synchronized communication, was applied for HSIS to reduce the dynamic error due to heavy traffics. The observed settlement was close to the alarm threshold, which is considered as the combination effects of the simulated settlement and the penetrating deviation during the pipe roof construction. Furthermore, an approach to account for false vertical drift due to instability of the fixed point of HSIS was proposed such that the settlement behavior during excavation phase could be effectively described. The unique implementation is a benefit to further HSIS application in practice.