Premium
Semi‐active control of flexible structures using closed‐loop input shaping techniques
Author(s) -
Alqado Tarek Edrees,
Nikolakopoulos George,
Dritsas Leonidas
Publication year - 2017
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.1913
Subject(s) - magnetorheological fluid , control theory (sociology) , robustness (evolution) , damper , benchmark (surveying) , actuator , engineering , control engineering , nonlinear system , control (management) , control system , computer science , artificial intelligence , biochemistry , chemistry , physics , electrical engineering , geodesy , quantum mechanics , gene , geography
Summary In this research effort, a novel approach on the control of structures with magnetorheological (MR) dampers is presented, based on an appropriately adapted closed‐loop version of the generic input shaping control theory. The MR damper is a very promising kind of semi‐active control system (actuator), mixing the advantages of the active and passive structural control systems, hence their increasing use as attenuators that reject the effects of dynamic loads on civil engineering structures. The main contribution of this article is the application and performance evaluation of the novel ‘Linear Matrix Inequality‐based’ feedback version of the input shaping control theory for the first time in the area of structural control. The need for the use of a feedback version of input shaping control stems from the design trade‐off between robustness and speed of response requirements. A simulation of a benchmark three‐story building with one MR damper is employed to verify the efficiency of the proposed control approach. The nonlinear behaviour of the MR damper, rigidly connected between the first floor of the structure and the ground, is captured by the well‐known Bouc–Wen model. The superiority and effectiveness of the proposed scheme in reducing the responses of the structure were proved using seven quantifiable evaluation criteria and by comparing these results with those achieved by classical and well‐established alternative control schemes. Copyright © 2016 John Wiley & Sons, Ltd.