Premium
Shape‐memory alloys as macrostrain sensors
Author(s) -
Amarante dos Santos Filipe
Publication year - 2017
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.1860
Subject(s) - shape memory alloy , sma* , transducer , materials science , pseudoelasticity , diffusionless transformation , actuator , residual stress , mechanical engineering , computer science , work (physics) , residual , structural engineering , martensite , artificial intelligence , engineering , composite material , electrical engineering , algorithm , microstructure
Summary The present paper studies the feasibility, through physical experimentation, of efficient and low‐cost macrostrain sensors, based on shape‐memory alloy technologies. The motivation of this work is to explore the intrinsic relation between electrical resistivity and strain, associated with the development of the stress induced martensitic transformation in superelastic shape‐memory alloys. This property enables the material to endure deformations up to 8% without any residual strains, making shape‐memory alloy wires excellent candidates for kernel elements in innovative strain transducers with dynamic ranges 4 to 5 times larger than the currently available strain transducers. An experimental prototype of a beam with a set of SMA macrostrain sensors is presented, featuring a timed scanning sequential algorithm to successfully perform the resistance readings. The aim of this work is to provide an additional insight into the potential of SMAs in new macrostrain measurement applications. Copyright © 2016 John Wiley & Sons, Ltd.