z-logo
Premium
Multiple‐crack identification in a channel section steel beam using a combined response surface methodology and genetic algorithm
Author(s) -
Dey Palash,
Talukdar S.,
Bordoloi D. J.
Publication year - 2016
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.1818
Subject(s) - structural engineering , finite element method , flange , cantilever , beam (structure) , response surface methodology , engineering , genetic algorithm , channel (broadcasting) , natural frequency , acoustics , computer science , machine learning , physics , electrical engineering , vibration
Summary The present study outlines a sequentially integrated finite‐element method (FEM)–response surface method (RSM)–genetic algorithm (GA) framework and implements this to predict the crack parameters, namely, crack location and crack depth ratio. A central composite face centered response surface design of the RSM technique is used to establish the direct relationships between the input parameters (crack location and crack depth ratio) and responses (natural frequencies) to build the response surface function (RSF). Multiple edge cracks are considered, which exist on the top flange of a thin‐walled channel section cantilever beam and modeled as line spring elements. In order to obtain RSFs of the first five natural frequencies in terms of process factors such as crack position and crack depth ratio, a number of numerical experiments based on FEM are conducted by using the design‐of‐experiment approach. An objective function obtained as the square of the difference between RSF and experimentally measured natural frequency has been minimized using GA to find out the optimum crack parameters. Twenty‐four steel channel beam specimens have been tested in the laboratory to extract the crack parameters from measured natural frequencies using the proposed approach. The results of the study indicate that the proposed approach performs remarkably, yielding crack parameters with great precision. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here