Premium
Discussion of system intrinsic parameters of tuned mass dampers used for seismic response reduction
Author(s) -
Miranda Julio C.
Publication year - 2016
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.1775
Subject(s) - modal , tuned mass damper , reduction (mathematics) , damper , salient , structural engineering , engineering , modal analysis , earthquake engineering , damping ratio , control theory (sociology) , computer science , vibration , mathematics , physics , materials science , finite element method , acoustics , geometry , control (management) , artificial intelligence , polymer chemistry
Summary Assimilating the structures incorporating tuned mass dampers to 2‐degrees‐of‐freedom mechanical systems, this paper discusses the salient parameters defining the efficiency of these devices when affixed to structures for the purpose of seismic response reduction. Focusing on parameters that are intrinsic to the mechanical systems and independent of ground motions, numerical and analytical expressions are first obtained for the modal damping of the systems. Subsequently, it is proposed that the highest efficiency in terms of modal damping allocation is achieved at tuning that results in modal damping that is in the same proportion as the participation factors for the modes. Further, some properties of the frequencies, tuning, and participation factors are analytically demonstrated. Finally, limited numerical calculations using a spectrum‐compatible accelerogram are offered to support the proposed method for modal damping allocation. Copyright © 2015 John Wiley & Sons, Ltd.