Premium
Development and application of a relative displacement sensor for structural health monitoring of composite bridges
Author(s) -
Li Jun,
Hao Hong,
Fan Keqing,
Brownjohn James
Publication year - 2015
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.1714
Subject(s) - structural health monitoring , structural engineering , torsion (gastropod) , composite number , displacement (psychology) , slab , engineering , materials science , composite material , psychology , psychotherapist , medicine , surgery
Summary This paper proposes a relative displacement sensor developed to measure directly the relative slip between slab and girder in composite bridges for assessing the health condition of shear connections. The structure, design principle, features, and calibration of the developed relative displacement sensor are presented. The design of the sensor ensures that there are no voltage outputs for the tension, compression, bending, and torsion effects, but only for the relative displacement between the two connecting pads of the sensor. The accuracy of the developed sensor in measuring the relative displacement response and using it for monitoring the conditions of shear connectors was tested on a composite bridge model in the laboratory. Shear connection condition was monitored under ambient vibrations, then static load tests were conducted to introduce cracks into the composite bridge. Both the vertical deflections and relative displacements were used for the crack detection. Experimental studies demonstrate that the developed sensor is very sensitive to the relative displacement and has a decent performance for the structural health monitoring of composite bridges. Copyright © 2014 John Wiley & Sons, Ltd.