Premium
An algorithm based on two‐step Kalman filter for intelligent structural damage detection
Author(s) -
Lei Ying,
Chen Feng,
Zhou Huan
Publication year - 2015
Publication title -
structural control and health monitoring
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.587
H-Index - 62
eISSN - 1545-2263
pISSN - 1545-2255
DOI - 10.1002/stc.1712
Subject(s) - kalman filter , benchmark (surveying) , state vector , structural health monitoring , algorithm , extended kalman filter , computer science , engineering , control theory (sociology) , artificial intelligence , structural engineering , physics , control (management) , geodesy , classical mechanics , geography
Summary In the traditional extended Kalman filter approach, unknown structural parameters are included in the extended state vector. Then, the sizes of the extended state vector and the corresponding state equation are quite large, and the state equation is highly nonlinear with respect to the extended state vector. This may cause identification divergent for a large number of unknown parameters. Also, such strategy requires large computational effort and storage capacities, which is not appropriate for intelligent structural damage detection implemented by smart sensors with microprocessors. In this paper, an algorithm based on a two‐step Kalman filter approach is proposed to remove the aforementioned drawbacks of the traditional extended Kalman filter. In the first step, recursive estimation of structural state vector is derived by Kalman filter with assumed structural parameters. In the second step, structural parameters and the updated structural state vector are estimated by the Kalman filter and the recursive estimation in the first step. Thus, the number of estimated variables in each step is reduced, which reduces the computational effort and storage requirements. This superiority is important for intelligent structural damage detection implemented by smart sensor in wireless sensor network. The proposed algorithm is first validated by numerical simulations results of structural damage detection of the phase‐I 3‐D ASCE benchmark building for structural health monitoring, a 30‐story shear building with minor damage, and an experimental test of damage detection of a lab multistory frame model. Then, it is applied to structural damage detection of a lab multistory model‐employed smart sensors embedded with the proposed algorithm. Copyright © 2014 John Wiley & Sons, Ltd.