z-logo
Premium
The effects of annealing and acid hydrolysis on resistant starch level and the properties of cross‐linked RS4 rice starch
Author(s) -
Song JiYoung,
Park JinHee,
Shin Malshick
Publication year - 2011
Publication title -
starch ‐ stärke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.62
H-Index - 82
eISSN - 1521-379X
pISSN - 0038-9056
DOI - 10.1002/star.201000097
Subject(s) - sonication , hydrolysis , starch , crystallinity , food science , chemistry , granule (geology) , resistant starch , acid hydrolysis , biochemistry , chromatography , materials science , composite material , crystallography
The effects of ANN prior to cross‐linking of non‐wx rice starches on a RS level and granular shape were investigated to apply them for a fat replacer with RS in a liquid food system. Acid hydrolysis and sonication were also evaluated to improve RS quality. The RS level was also compared with AOAC and P/G methods. The RS levels of CRS analyzed with the AOAC method were higher than those analyzed with the P/G method, but the differences in the RS level of CRS affected an ANN condition and starch content during cross‐linking. When ANN was conducted at 50°C for 12 h using the AOAC method, and starch content (40%) used in cross‐linking was at 45°C for 3 h, the highest RS level of CRS treated with ANN was 69.4% compared to 38.3% RS level of CRS without ANN. The 1 h acid hydrolysis (pH 4.0) of CRS treated ANN increased 114.5% of the RS level (79.4% compared to 69.4% in CRS treated ANN), regardless of which analytical methods were used. CRS granules remained the same as native ones with a polygonal shape and A type crystallinity even after being treated with ANN, and acid hydrolysis. The sonication before cross‐linking reaction increased the RS level and prevented increase in size from aggregating CRS granules.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here