Premium
Rate of Hydroxypropylation of Starches as a Function of Reaction Time
Author(s) -
Han JungAh,
BeMiller James N.
Publication year - 2005
Publication title -
starch ‐ stärke
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.62
H-Index - 82
eISSN - 1521-379X
pISSN - 0038-9056
DOI - 10.1002/star.200500415
Subject(s) - chemistry , starch , reagent , waxy corn , propylene oxide , reaction rate , corn starch , potato starch , chemical reaction , polysaccharide , molecule , food science , organic chemistry , nuclear chemistry , polymer , catalysis , ethylene oxide , copolymer
Abstract To determine the course of the hydroxypropylation reaction as a function of reaction time, waxy corn, normal corn, potato, and wheat starches were reacted with propylene oxide under normal reaction conditions. Amounts of leached material and MS values of both leached and granular molecules were determined over the course of reaction. For waxy and normal corn starches, the extent of reaction increased linearly from 0 to 12 h, after which the reaction proceeded at an ever decreasing rate, reaching zero at about 30 h of reaction. The initial rate of reaction was determined by reacting waxy corn starch with a greater amount of propylene oxide (10×normal concentration) so that there would be no slowing of the reaction due to loss of reagent. Results confirmed that the initial reaction rate was linear. The hypothesis that, as derivatization proceeds, granules are opened up, resulting in ever increasing rates of reaction was not substantiated. Amounts and MS values of leached molecules from waxy and normal corn starches increased continuously over the course of the reaction. For potato and wheat starches, M S values of the granular starch also increased continuously over the entire reaction period. Amounts of leached molecules from potato starch were greater than those from wheat starch, with the amount leached at 30 h from potato starch being slightly more than that from normal and waxy corn starches and that from wheat starch being considerably less.