z-logo
Premium
Large complex data: divide and recombine (D&R) with RHIPE
Author(s) -
Guha Saptarshi,
Hafen Ryan,
Rounds Jeremiah,
Xia Jin,
Li Jianfu,
Xi Bowei,
Cleveland William S.
Publication year - 2012
Publication title -
stat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 18
ISSN - 2049-1573
DOI - 10.1002/sta4.7
Subject(s) - embarrassingly parallel , computer science , computation , visualization , big data , parallel computing , data visualization , statistical analysis , theoretical computer science , data mining , computational science , algorithm , mathematics , statistics
D&R is a new statistical approach to the analysis of large complex data. The data are divided into subsets. Computationally, each subset is a small dataset. Analytic methods are applied to each of the subsets, and the outputs of each method are recombined to form a result for the entire data. Computations can be run in parallel with no communication among them, making them embarrassingly parallel, the simplest possible parallel processing. Using D&R, a data analyst can apply almost any statistical or visualization method to large complex data. Direct application of most analytic methods to the entire data is either infeasible, or impractical. D&R enables deep analysis: comprehensive analysis, including visualization of the detailed data, that minimizes the risk of losing important information. One of our D&R research thrusts uses statistics to develop “best” division and recombination procedures for analytic methods. Another is a D&R computational environment that has two widely used components, R and Hadoop, and our RHIPE merger of them. Hadoop is a distributed database and parallel compute engine that executes the embarrassingly parallel D&R computations across a cluster. RHIPE allows analysis wholly from within R, making programming with the data very efficient. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom