Premium
Classification of RNA‐Seq data via Gaussian copulas
Author(s) -
Zhang Qingyang
Publication year - 2017
Publication title -
stat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 18
ISSN - 2049-1573
DOI - 10.1002/sta4.144
Subject(s) - negative binomial distribution , overdispersion , mathematics , count data , poisson distribution , bayesian probability , independence (probability theory) , binomial distribution , mixture model , statistics , computer science
RNA‐sequencing (RNA‐Seq) has become a preferred option to quantify gene expression, because it is more accurate and reliable than microarrays. In RNA‐Seq experiments, the expression level of a gene is measured by the count of short reads that are mapped to the gene region. Although some normal‐based statistical methods may also be applied to log‐transformed read counts, they are not ideal for directly modelling RNA‐Seq data. Two discrete distributions, Poisson distribution and negative binomial distribution, have been commonly used in the literature to model RNA‐Seq data, where the latter is a natural extension of the former with allowance of overdispersion. Because of the technical difficulty in modelling correlated counts, most existing classifiers based on discrete distributions assume that genes are independent of each other. However, as we show in this paper, the independence assumption may cause non‐ignorable bias in estimating the discriminant score, making the classification inaccurate. To this end, we drop the independence assumption and explicitly model the dependence between genes using a Gaussian copula. We apply a Bayesian approach to estimate the covariance matrix and the overdispersion parameter in negative binomial distribution. Both synthetic data and real data are used to demonstrate the advantages of our model. Copyright © 2017 John Wiley & Sons, Ltd.