Premium
Interactions of Polymer/Coke Blends with Molten Steel at 1823 K: Interfacial Phenomena
Author(s) -
Kongkarat Somyote,
Khanna Rita,
Sahajwalla Veena
Publication year - 2013
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.201200167
Subject(s) - materials science , coke , polymer , high density polyethylene , steelmaking , metallurgy , dissolution , melting point , carbon fibers , sessile drop technique , polyethylene , drop (telecommunication) , composite material , chemical engineering , wetting , composite number , engineering , telecommunications , computer science
With an aim to recycle waste polymers as a carbon resource in steelmaking, in‐depth investigations have been carried out on polymer/coke blends and molten steel at 1823 K. Three polymers, namely high density polyethylene (HDPE), polyethylene terephthalate (PET), and bakelite were blended with metallurgical coke and devolatilized at 1473 K using a drop tube furnace. High temperature interactions of various chars with molten steel were investigated at 1823 K using the sessile drop technique in argon atmosphere; the influence of polymers on the interfacial phenomena and carbon dissolution was determined. While the residual volatiles from HDPE did not affect the chemical composition of interfacial products, the coverage of the interfacial region was somewhat slower than metallurgical coke. Oxygen present in PET was found to oxidize liquid steel leading to the formation of FeO at the interface modifying both the chemical composition and the morphology of the interfacial region. CaCO 3 , present as a filler impurity in bakelite was found to act as a fluxing agent and lowered the melting point of the ash layer at the metal/carbon interface. The addition of polymers improved the overall carbon dissolution into molten steel by a small extent as compared to metallurgical coke. This study has shown that a variety of waste polymers can be utilized to partially replace metallurgical coke in steelmaking.