Premium
Investigation on Water Model for Fluid Flow in Slab Continuous Casting Mold With Consideration of Solidified Process
Author(s) -
Jin Xing,
Chen DengFu,
Xie Xin,
Shen Jialong,
Long Mujun
Publication year - 2013
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.201200076
Subject(s) - slab , mold , mechanics , materials science , continuous casting , water model , flow (mathematics) , casting , fluid dynamics , water flow , volumetric flow rate , shell (structure) , metallurgy , composite material , geotechnical engineering , geology , engineering , structural engineering , chemistry , physics , computational chemistry , molecular dynamics
This study aims to propose suitable simulation methods, which enable to reduce the major differences between water model and real caster, such as the gradually decreased flow space, flow mass in the casting direction, and the momentum decay in the mushy zone. With consideration of solidified process, the method is concerned with the change of flow space and flow mass at the casting direction in water model. The level fluctuations, stimulus–response curves, velocities of liquid surface, and distributions of liquid slag have been changed in the water model to study the differences of flow character and the variation of fluid flow in molds. The mold with a solidified shell leads to significant differences in flow behaviors, such as higher level fluctuations, higher surface velocities, and worse liquid slag distributions. Neglecting the solidified shell causes unrealistic lower surface velocities and level fluctuations in water model. The mold with consideration of flow mass balance has higher level fluctuations and surface velocities than the mold without shell, and has lower level fluctuations and surface velocities than that of mold with a shell. The results indicate that it is necessary for water model to take the solidified process into account to acquire more accurate and reliable experiment results, especially for thinner slab.