z-logo
Premium
Effect of V on Hot Deformation Characteristics of TWIP Steels
Author(s) -
Reyes Francisco,
Calvo Jessica,
Cabrera José María,
Mejía Ignacio
Publication year - 2012
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.201100320
Subject(s) - twip , materials science , dynamic recrystallization , recrystallization (geology) , metallurgy , grain size , crystal twinning , hot working , volume fraction , plasticity , ductility (earth science) , microstructure , composite material , creep , geology , paleontology
Twinning induced plasticity (TWIP) steels, which rely on high Mn contents to promote twinning as the deformation mechanism, exhibit high ultimate strengths together with outstanding combinations of ultimate strength and ductility. In terms of mechanical properties, one of the most important microstructural features is grain size. The knowledge of the kinetics of recrystallization mechanisms, i.e., dynamic recrystallization (DRX) and static recrystallization (SRX), can be used in order to control the grain size of the final product by a proper rolling schedule design. The focus of this work is the characterization of the DRX kinetics of two TWIP steels. The basic composition of the steels is Fe–21Mn–0.4C–1.5Al–1.5Si, and one of them is further alloyed with 0.12% V. With this objective, compression tests were carried out at 900, 1000, and 1100°C and strain rates ranging from 1 × 10 −1  s −1 to 1 × 10 −4  s −1 . Furthermore, metallographic observation by optical microscopy (OM) was done to assess the evolution of grain size for the different deformation conditions. According to the results, the existence of V in the composition does not affect the hot flow behavior of the steel, although recrystallization fraction and recrystallized grain size decrease for the V‐containing steel.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here