Premium
The Significance of Crack Initiation Stage in Very High Cycle Fatigue of Steels
Author(s) -
Kazymyrovych V.,
Bergström J.,
Burman C.
Publication year - 2010
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200900139
Subject(s) - materials science , fatigue testing , crack closure , striation , fracture mechanics , paris' law , structural engineering , composite material , metallurgy , engineering
Different stages of the Very High Cycle Fatigue (VHCF) crack evolution in tool steels have been explored using a 20 kHz ultrasonic fatigue testing equipment. Extensive experimental data is presented describing VHCF behaviour, strength and crack initiating defects in an AISI H11 tool steel. Striation measurements are used to estimate fatigue crack growth rate, between 10 −8 and 10 −6 m/cycle, and the number of load cycles required for a crack to grow to critical dimensions. The growth of small fatigue cracks within the “fish‐eye” is shown to be distinctively different from the crack propagation behaviour of larger cracks. More importantly, the crack initiation stage is shown to determine the total fatigue life, which emphasizes the inherent difficulty to detect VHCF cracks prior to failure. Several mechanisms for initiation and early crack growth are possible. Some of them are discussed here: crack development by local accumulation of fatigue damage at the inclusion – matrix interface, hydrogen assisted crack growth and crack initiation by decohesion of carbides from the matrix.