Premium
Mathematical Modelling of Non‐equilibrium Decarburization Process during Vacuum Circulation Refining of Molten Steel: Application of the Model and Results (II) ‐ Non‐equilibrium Factors and their Influences on the Decarburization Process
Author(s) -
Wei JiHe,
Hu HanTao
Publication year - 2008
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200806349
Subject(s) - decarburization , dissipation , thermodynamics , thermodynamic equilibrium , steelmaking , mechanics , refining (metallurgy) , solvent drag , turbulence , ladle , diffusion , entropy production , work (physics) , chemical equilibrium , non equilibrium thermodynamics , materials science , chemistry , metallurgy , physics , microstructure , grain boundary
The results, which were obtained by applying the novel three‐dimensional mathematical model proposed and developed earlier [1] to model and analyse the decarburization process of molten steel during the RH and RH‐KTB refining in a 90‐t multifunction RH degasser, showed that under the conditions of the present work, the contributions of the flow, mass diffusion and chemical reactions and other non‐equilibrium processes to the Raleigh‐Onsager dissipation function are not large throughout vacuum circulation refining of molten steel. Thus, it is held everywhere in the whole flow field of the system that the value of the non‐linear dissipation factor is approximately equal to one. The entropy generation and energy dissipation in the system rapidly decrease with increasing refining time. Compared to the work done by the drag force while the bubbles passing through the liquid phase as well as by the viscous and turbulent flow and diffusion processes, the carbon‐oxygen reaction itself plays a more governing role to the entropy production and energy dissipation in the system. The RH refining process of low and ultra‐low carbon steels seems to be close to the linear zone of the non‐equilibrium state. The influences of the viscous and turbulent flow dissipation as well as diffusion processes on the non‐equilibrium activity coefficients of the carbon and oxygen in the molten steel may almost be neglected. Except in the regions where the chemical C‐O reaction takes place (the up‐snorkel zone and the bath in the vacuum vessel), the non‐equilibrium components of the non‐equilibrium activity coefficients of the carbon and oxygen in the molten steel at the other places in the degasser are all tending towards one. The non‐equilibrium effects (mainly, the C‐O reaction itself) give a restraining role on the decarburization of liquid steel in the RH refining process. This model is able to model more reasonably and precisely the non‐equilibrium decarburization process during the vacuum circulation refining of molten steel in comparison to a model without considering the non‐equilibrium effects.