Premium
Numerical Analysis of Pulverized Coal Combustion inside Tuyere and Raceway
Author(s) -
Gu Mingyan,
Zhang Mingchuan,
Selvarasu N.K.C.,
Zhao Yongfu,
Zhou Chenn Q.
Publication year - 2008
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200806311
Subject(s) - raceway , tuyere , pulverized coal fired boiler , blast furnace , combustion , coal , materials science , metallurgy , froude number , mechanics , waste management , engineering , chemistry , composite material , physics , flow (mathematics) , organic chemistry , lubrication
The process of pulverized coal combustion inside the tuyere and raceway plays a very important role in the performance of a blast furnace. A three‐dimensional multiphase CFD model using Eulerian approach has been developed to simulate the coal devolatilization and combustion process inside tuyere and raceway. The velocity field, temperature distribution, and combustion characteristics have been determined in details and the effect of tuyere diameter on the pulverized coal combustion process has been predicted. Numerical results show that the pulverized coal combustion process displays different characteristics when the tuyere diameter changes. For a bigger diameter tuyere, there is more coal devolatilization, and combustion occurs inside the tuyere, which results in a better combustion condition compared to smaller tuyere diameters. The gas temperature distributions inside the raceway are dependent on the tuyure diameter; the temperature for the large size tuyere is higher than that of the small one. The coal burnout changes from 85.3% to 60.0% when the tuyere diameter reduces from 0.165m to 0.146 m.