Premium
Direct Reduction of Mixtures of Manganese Ore and Iron Ore
Author(s) -
OhlerMartins Karla,
Senk Dieter
Publication year - 2008
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200806203
Subject(s) - iron ore , manganese , metallurgy , reduction (mathematics) , materials science , mathematics , geometry
This paper presents recent results of direct reduction investigation of different combination of blends of manganese ore, iron ore and coal at the Department of Ferrous Metallurgy (IEHK) of RWTH Aachen University. A mixture of iron and manganese ore in a ratio of 75/25 is a good raw material for steelmaking of high Mn‐alloyed grades. The experimental studies consisting of reduction of (a) fine material and (b) agglomerated material (briquettes) were carried out in the range of 1273 to 1673 K. The behaviour of combined reduction of manganese ore and iron ore and the employment in the direct reduction on a coal and gas basis for production of steels with high Mn content were investigated. It was found that a high metallization degree for Mn can be reached at 1273 K with the reduction of manganese ore by hydrogen‐containing gas. Addition of carbon monoxide to the reducing gas retarded the reduction process. The addition of coal to manganese ore and iron ore blends increased the degree of reduction. The results of carbothermic reduction of briquettes consisting of a mixture of manganese ore and iron ore combined with coal as reducing agent show that a high temperature, a low Mn/Fe ratio and a high Fe 2 O 3 content have a favourable effect on the degree of reduction. In order to obtain a high degree of metallization, the temperature should be higher than 1473 K. The reduction of briquettes at higher temperatures (up 1573 K) has shown a molten phase and the separation of slag and metal.