Premium
Preliminary Investigation of Mathematical Modeling of Stainless Steelmaking in an AOD Converter: Application of the Model and Results
Author(s) -
Shi GuoMin,
Wei JiHe,
Zhu HongLi,
Shu JieHui,
Jiang QingYuan,
Chi HeBing
Publication year - 2007
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200705897
Subject(s) - decarburization , refining (metallurgy) , steelmaking , mass transfer , materials science , work (physics) , metallurgy , carbon fibers , carbon steel , oxygen , redox , thermodynamics , chemistry , corrosion , composite material , physics , organic chemistry , composite number
The changes in the contents of C, Cr, Si, and Mn in molten steel and the bath temperature during the refining of 304‐grade stainless steel, including both the oxidation (decarburization) and reduction processes, in a side and top combined blowing AOD converter of 120 t capacity have been predicted. The calculations were performed using the mathematical model proposed and presented in Part I of the present work [1] and were based on the designed operational mode of the AOD converter. The model predictions were compared to the referenced values given by the technological design. The results demonstrate that the predictions by the model are in good agreement with the reference values. Not only the competition of oxidation among the elements dissolved in the steel during the oxidative refining process and the corresponding distribution ratios of oxygen, but also the competition of reduction among the oxides during the argon stirring and reductive refining process and the relevant supplied oxygen ratios of the oxides, can all be characterized more comprehensively and determined more reasonably by using the Gibbs free energies of the oxidation and reduction reactions. Corresponding to the top, side, and side and top combined (overall) refining processes of 304‐grade stainless steel in a 120 t AOD converter, the carbon concentrations at the critical rates, i.e. the critical carbon concentrations, after which the decarburization changes to be controlled by the mass transfer of carbon in molten steel, are 1.20, 0.37 and 0.53 mass%, respectively, under the given designed operational mode. The model can offer some useful information for determining the technology of the side and top combined blowing AOD refining process of stainless steel.