z-logo
Premium
Numerical Simulation of Nonmetallic Inclusions Behaviour in Gas‐Stirred Ladles
Author(s) -
Zhu Miaoyong,
Zheng Shuguo,
Huang Zongze,
Gu Wenping
Publication year - 2005
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200506085
Subject(s) - ladle , refining (metallurgy) , materials science , metallurgy , non metallic inclusions , inclusion (mineral) , volumetric flow rate , argon , jet (fluid) , steelmaking , chemistry , mineralogy , thermodynamics , physics , organic chemistry
The secondary refining of molten steel in gas‐stirred ladle has played a more and more important role in the production of high quality steel. In the present work, a mathematical model of the fluid flow and inclusions behaviour in a 150t gas‐stirred ladle was presented, and the variations in concentration, size and density for non‐metallic inclusions in the ladle during the refining process were predicted. The results show that during the refining process, the variations in the number density of the inclusions differed depending on size. The inclusions with a diameter less than 25 μm decrease during the whole period, while inclusions with diameter larger than 25 μm increase in the first stage of the treatment and gradually decrease during the later stage. After 15 minutes, all inclusions show a tendency to decrease, but the removal rate for inclusions of smaller size becomes slower. After treatment in the ladle, inclusions with a diameter larger than 50 μm were removed, the number of inclusions with a size between 30‐40 μm was not high, while inclusions that were smaller than 25 μm still remained in the molten steel. Two‐jet bubbling demonstrated an advantage over one‐jet for inclusion removal. The practice of bubbling argon with a higher gas flowrate initially, followed by a lower flowrate in the ladle was found to be beneficial for inclusions removal.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here