z-logo
Premium
Structural Morphologies and Deformaiton Characteristics of Semi‐solid Type 304 Stainless Steel during Solidificaiton and Remelting
Author(s) -
Yanagimoto Jun,
Li JingYuan
Publication year - 2005
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200505977
Subject(s) - materials science , microstructure , austenite , metallurgy , ferrite (magnet) , dendrite (mathematics) , deformation (meteorology) , composite material , electron microprobe , phase (matter) , geometry , mathematics , chemistry , organic chemistry
Microstructural evolutions of type 304 stainless steel and the related mechanical property of flow stress in semi‐solid state are investigated. The evolutions of microstructure during solidification, partial remelting of a hot‐rolled billet and partial remelting of a cast billet are compared with respect to structural morphologies in the semi‐solid state. Various structural morphologies, such as the linear and multilayered liquid/austenite/δ‐ferrite structure, globular liquid/δ‐ferrite structure and dendrite structure, are characterized using optical micrographs and an EPMA (electron probe microanalyzer). The various structural morphologies in the semi‐solid state are influenced not only by the phase transformation but also by the previous treatment of type 304 steel, such as hot rolling and casting. Furthermore, a series of hot compression tests are conducted for various combinations of deformation rate and deformation temperature in the semi‐solid state, to measure the flow stress and the change in microstructure resulting from plastic deformation. Flow stress, phase segregation, microfracture and distortion of solid particles during and after the hot compression test are strongly affected by the structural morphology in the semi‐solid state, such as the dendrite structure, nonglobular structure and globular structure. Semi‐solid type 304 stainless steel with dendrite structure exhibits the highest flow stress, which is about three times that of steel with globular structure, although the testing temperature and deformation rate are controlled to be the same. This is a result of the higher bonding force between solid particles and lower fluidity of the liquid phase of the dendrite structure than those of the globular structure, which exhibits excellent fluidity of the liquid phase and rotation of solid particles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here